

EMIL project is funded by the European Union and UK Research and innovation.

Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European

Union. Neither the European Union nor the granting authority can be held responsible for them.

D3.3 – Hardware integration & Adaptation of

foundation libraries of AR Magic Lanterns

Work Package 3 – Lighthouse Projects at Laboratory Nodes

Authors:

Paul Hine (UPF)
Renato Muñoz (UPF)
Narcis Pares (UPF)

Grant Agreement number 101070533
Action Acronym EMIL

Action Title European Media and Immersion Lab
Call HORIZON-CL4-2021-HUMAN-01

 D3.3 – Hardware integration and Adaptation of
foundation libraries of AR Magic Lanterns

2

Version date of
the Annex I
against which the
assessment will
be made

Start date of
the project

Due date of
the
deliverable

Actual date of
submission

Lead BEN /
AP for the
deliverable

Dissemination
level of the
deliverable

18.3.2022 1.9.2022 31.8.2023 31.8.2023 UPF Public

Document reviewer(s)

Name Beneficiary

Juhani Tenhunen AALTO

Abstract

This deliverable describes the advances in hardware and system integration of the devices known

as Augmented Reality Magic Lanterns, designed and developed by the UPF partner. The

document describes the progress in moving from the initial TRL4 demonstrator that had been

tested under controlled conditions at the historical site of Barcino (the ancient Roman Barcelona),

up to the desired TRL8 device that will be achieved by the end of EMIL. In this process we

describe the reasons for leaving behind the off-the-shelf-hardware version of the TRL4

demonstrator prototype and justify the need for a different HW integration. Hence, this document

provides an account of all the investigations, hardware analysis, computer vision utilities, platform

compatibilities, etc., that are needed for reaching a final integration and how the UPF team has

undertaken these tasks.

 D3.3 – Hardware integration and Adaptation of
foundation libraries of AR Magic Lanterns

3

Contents

Contents .. 3

1 Introduction ... 4

2 Motivations and challenges for integration ... 5

2.1 Form factor... 6

2.2 Deployment .. 6

2.3 Tracking Stability ... 6

2.4 Tracking Performance ... 7

2.5 Localization Reliability ... 7

2.6 System Performance ... 8

3 Progress and specifications .. 8

3.1 Computer vision and tracking .. 8

3.2 Unity integration ... 12

3.3 Hardware platform ... 13

3.3.1 Computing and graphics.. 13

3.3.2 Cameras and sensors ... 14

3.3.3 Projector .. 14

3.3.4 Batteries and Power .. 15

3.4 Industrial Design .. 16

4 Conclusion and Next steps ... 17

Appendix 1: List of Terms ... 19

 D3.3 – Hardware integration and Adaptation of
foundation libraries of AR Magic Lanterns

4

1 Introduction

The AR Magic Lantern is an augmented reality flashlight that enables users to see and interact with

virtual content projected onto physical surfaces around them. It is designed especially to support

group-oriented, co-located, and situated AR experiences. This device is the implementation of a novel

AR paradigm that UPF has defined, known as the “World-as-Support" (WaS) paradigm. This

paradigm provides huge advantages over the existing usual AR paradigms when analysing group-

based user experiences in public spaces such as heritage sites. The most common AR paradigm is

that known as “Window-on-the World” (WoW) which is implemented by mobile devices such as

smartphones and tablets. These devices force users to put all their attention on the screen and

therefore the users pay little attention to the physical world (“digital dividers”) and are difficult to share

with other users. The other existing AR paradigm is that of “Extended Vision” which is implemented by

AR headsets. These devices provide narrow fields of view, ghostly virtual images and, in their current

technological state they are not very robust for using in public spaces and are quite costly. Both these

two types of paradigms and their respective devices force every user to have to use/wear one such

device and users are never too sure of what other users are seeing. This does not facilitate users with

motor or cognitive special needs to enjoy the augmented experiences and also breaks the group

dynamics of groups of visitors to these sites. The AR Magic Lanterns, as implementers of the WaS

paradigm, project the augmented stimuli on top of the real-world surfaces, adapting the projection

such that they look adequately blended in the real world. This makes it accessible to a group of

visitors (typically 2 to 8 individuals) without forcing each one to use/wear one such device and

allowing for face-to-face communication between them enjoying the visualization, discussion, and

interaction of the experience as a group. For further details on the paradigm and the device, EMIL’s

website [1] provides a comprehensive overview.

The prototype or demonstrator that UPF had achieved before the start of EMIL was based on off-the-

shelf components that were placed within a 3D printed external casing that looked like a flashlight.

The components were:

• a smartphone that acted as the computing device for performing the computer-vision SLAM

computations to determine the pose of the device and as the virtual world controller and

renderer (figure 1b),

• a pico-projector to project the augmented stimuli onto the physical world around the user

(figure 1a.1),

• a loudspeaker to provide sound feedback to the user (figure 1a.3),

[1] https://emil-xr.eu/lighthouse-projects/upf-ar-magic-lantern/

https://emil-xr.eu/lighthouse-projects/upf-ar-magic-lantern/

 D3.3 – Hardware integration and Adaptation of
foundation libraries of AR Magic Lanterns

5

• a battery to feed the devices during a sufficient time to make the experience rich for the user

(figure 1a.2).

This device showed a number of weaknesses as well as some black boxes that we could not control.

This is why this lighthouse project from EMIL is moving forward in designing and developing a new

AR Magic Lantern based on electronic devices and components that are better controlled by us and

provide solutions to the weaknesses that our demonstrator showed.

Figure 1 Detail views of the TRL4 prototype of the AR Magic Lantern: (a) top view, case open, (b)

side view, case open, and (c) front view, case closed.

This report: (a) reviews motivations and challenges for integration, (b) shows progress on integration,

(c) provides detailed specifications of hardware and software development, and (d) discusses work to

come.

2 Motivations and challenges for integration

Augmented reality requires precise real-time tracking and localization of the user’s visual perspective

(6-DOF head tracking for HMDs and device tracking for WoW) in order to convincingly blend virtual

content with the physical world. The AR subsystems that perform these functions utilize sophisticated

computer vision and machine learning processes that are resource intensive and must therefore be

highly optimized to run on mobile hardware. Early prototype iterations of the ARML chose to use a

pre-built AR subsystem that was already optimized to run on a smartphone. The options available at

the time were ARKit from Apple and ARCore from Google. ARKit was chosen because of its superior

tracking performance and ability to store and reload a scene consisting of virtual content positioned

accurately with respect to a physical space (persistence). The prototypes using ARKit used an

iPhone 7 and were later updated to use the iPhone SE 2020.

Although the pre-built and optimized AR subsystem provided by ARKit allowed us to rapidly prototype

a hardware and software platform for the ARML, it presented limitations that blocked us from

improvement in six key areas: form factor, deployment, tracking stability, tracking performance,

localization reliability, and system performance.

 D3.3 – Hardware integration and Adaptation of
foundation libraries of AR Magic Lanterns

6

2.1 Form factor

In the previous prototype, the iPhone's front-facing camera was required for tracking, so the front part

of the lantern had to accommodate a smartphone mounted with the camera facing forward. Even with

a small smartphone (iPhone 7), the width of the lantern front was an awkward 21cm. Many high-end

smartphones have large screens, meaning the design would have to accommodate up to 16x8cm,

increasing the lantern width even more. To support the design metaphor of the torch (flashlight), our

goal is to produce a body for the lantern that is cylindrical with a diameter no larger than 12 cm.

Single-board computers (SBCs) are a good substitute for a smartphone in terms of size and

compatibility, but the computing power of SBCs lags behind the latest smartphone. A big challenge

will be optimizing both systems to run on the single computer (see System Performance). In the

previous prototype, a great deal of space inside the lantern housing was occupied by cables and

adapters. The space required by cables and adapters remains a problem even as we move to SBCs,

so our objective is to source or build custom cabling to minimize the space they occupy.

2.2 Deployment

Loading the software onto the previous prototype required that we rebuild and re-install the application

on the smartphone. Because the phone runs the Apple mobile OS, iOS, the build and install process

is hindered by a complex licensing protocol enforced by Apple. To load new software and content

onto the lantern, the developer had to open the lantern body, remove the phone and attach it to a

computer. This put a lot of physical stress on the phone and lantern body and thus negatively

impacted the durability of the whole system. The deployment process for loading updates to software

or content to the lantern should be simple and require no special licensing. The developer should be

able to load updates wirelessly to the lantern using only Unity. We must integrate all of the application

components (gameplay, tracking) into one Android application. Many of the open-source programs

and tools for tracking are tailored to Linux and must be ported to Android. Therefore, we must write a

layer that binds the Unity application code to the C++ code for tracking.

2.3 Tracking Stability

While ARKit provides a very robust tracking and localization system, it is designed to run specifically

for the limited visual hardware of the smartphone (e.g., single camera) and for specific environmental

conditions (e.g., good lighting). For the conditions required by the lantern, tracking became very

unstable. In the lower light conditions needed to see the projections, it had difficulty tracking because

smartphone cameras are not sensitive to low light. Also, since the camera captures not only the

physical world, but also the projected augmented stimuli, the camera does not perceive a stable

physical world. Hence, the projections themselves often confused the tracking system because they

were seen as features of the environment. The lantern requires a custom tracking system that works

 D3.3 – Hardware integration and Adaptation of
foundation libraries of AR Magic Lanterns

7

with multiple cameras and infrared illuminators (active stereo) so depth measurements can enhance

tracking accuracy and stability in low lighting. The tracking software layer must be customized to

ignore the area of the image containing the projector output. There are several mature open-source

projects available for tracking that use the stereo hardware and depth data, but they must be tuned for

use in the environmental conditions we expect and adjusted to ignore the "noise" introduced by the

projected content.

2.4 Tracking Performance

The tracking system in the previous prototype, ARKit, is optimized to run on mobile hardware. Even

on an iPhone 7 from 2016, the frame rate and latency were low enough that a simple screen-based

AR experience ran smoothly with no perceived lag. However, screen-based AR can get away with

more lag because it can artificially “slow down” (or delay) the video feed to match the latency and

framerate of the tracking updates. When projecting AR content onto physical surfaces, the latency

and frame rate demands are higher because the artificial sync used for screen-based AR is not

available. Even on an Apple iPhone 12 Pro from 2020, there is enough lag in the lantern prototype to

ruin the perception that AR content is really attached to physical locations. The lantern’s motion-to-

photon latency (the time required to update the projected image after a movement) must be

sufficiently low that AR objects appear to stay firmly attached to their physical location while the user

moves the lantern across them. We must be able to optimize all parts of the motion-to-photon pipeline

to reach this goal. But even fully optimized, we expect that the processing required by the SLAM

tracking system (long-range) incurs latency that exceeds the motion-to-photon target. We must

therefore use direct sensor data to do low-latency (short-range) "dead-reckoning" updates to the

orientation. The low-latency/short-range and high-latency/long-range systems must operate in parallel

and cooperate.

2.5 Localization Reliability

On the previous prototype, ARKit provided methods to store and re-load maps it made of a physical

space, which helped us create persistent content for our prototype museum experiences. There is a

step after re-loading a map when the system must re-localize the camera within the saved space. As

there is no dependable way to help the system re-localize, the technician would have to move the

device slowly and carefully around the play area, sometimes for a few minutes, before the re-

localization completed. This is not a practical solution for end-users. An end-user (e.g., museum

visitor) starting an experience with the lantern should be able to point the lantern at a QR code or

poster on the wall and dependably begin the experience seconds later with correct re-localization.

Incorporating markers into a tracking session is not a basic function of SLAM tracking systems. On

the other hand, the one we are using, RTAB-Map, does provide some support for it. We must prepare

the map in a specific way to support markers.

 D3.3 – Hardware integration and Adaptation of
foundation libraries of AR Magic Lanterns

8

2.6 System Performance

In the previous prototype, the integration between Unity and iOS meant that apps made with Unity ran

with native performance on the iPhone. AR Foundation is the Unity package that allows it to work with

ARKit on the device, also at native speeds. However, AR processing is very compute intensive, which

left fewer resources available to the rendering and gameplay parts of the app. There were noticeable

performance degradations like dropped frames and tracking loss as the AR and graphics subsystems

competed for resources. Most components of ARKit are a "black box" that do not allow tuning or

customization. The tracking system of the lantern must adapt to the resource demands on the system.

For example, if there is AR content in view with big resource needs, the tracking system should fall

back to a lower-fidelity but higher-performance mode. To minimize latency and overall device size, the

goal is to run all lantern functions from a single computer. This will require fine-tuned optimization,

excellent resource management, and, as mentioned above in Deployment, a translation of some

Linux software to the Android platform.

3 Progress and specifications

3.1 Computer vision and tracking

To build and optimize a Computer Vision (CV) tracking system prototype, we need to try many

combinations of inputs, processing stages, and outputs. We chose to develop the computer vision

system on top of Robot Operating System (ROS) [2], a set of tools and libraries for building quick and

robust robotics projects on Linux systems. Because the vision challenges of an autonomous robot are

similar to those of our augmented reality device, we found ROS well-suited to our requirements.

For our SLAM framework, we chose RTAB-Map (Real-Time Appearance-Based Mapping), a state-of-

the-art, open-source implementation that is designed to take advantage of image inputs that include

depth data (see Hardware Platform). Like ROS, RTAB-Map also has a modular architecture that

allows us to try different combinations of processing components (e.g., feature extractors) throughout

the vision pipeline.

The CV tracking system solution is a set of configuration files and software components that tune the

ROS and RTAB-Map frameworks to run optimally with our hardware and tracking requirements,

including:

[2] https://www.ros.org/

https://www.ros.org/

 D3.3 – Hardware integration and Adaptation of
foundation libraries of AR Magic Lanterns

9

Open-source modules developed to solve common CV problems:

• We use many routines from OpenCV, a library that provides hundreds of utility functions for

manipulating and processing image-type data.

• We also use open-source modules in our system called "feature extractors" for finding and

tracking the position of recognizable regions (features) of images.

Software components we developed to solve challenges unique to our tracking requirements:

• Our system must provide an anchoring function that allows users to attach virtual content to

specific points (anchors) in a physical space. We wrote a software component in Python that

optimizes RTAB-Map behavior around anchors to provide the best performance and

experience possible when the user is interacting with anchored content.

• Additionally, our system must ignore the image area occupied by the projector content, which

would confuse the tracking algorithm, so we modified the RTAB-Map source to allow us to

define which areas of the image to use for feature finding. For starting the tracking session,

we configured RTAB-Map so users can just point at a visual marker (poster or fiducial marker)

on the wall.

Figure 2 The hardware configuration of the computer vision benchmarking system using the HTC

Vive Tracker (a.3) for ground truth in a large test environment (b). This shows an earlier

configuration where we evaluated the RealSense D435 (a.1), which has no built-in IMU in

combination with the IMU readings from the RealSense T265 (a.2).

Testing the performance of a computer vision tracking system requires that we compare our solution

to a "ground truth" benchmark, i.e., test it against the performance of another solution which has a

known accuracy. For the benchmark, we used the Steam VR Tracking System with 4 base stations

 D3.3 – Hardware integration and Adaptation of
foundation libraries of AR Magic Lanterns

10

and an HTC Vive Tracker unit (figure 2b). The accuracy of this system has been tested in several

studies and found to be in a large but bounded range of ≤1mm to 7.5cm [3].

To compare both systems, we utilize two key performance indicators: Absolute Trajectory Error (ATE)

and Relative Pose Error (RPE). ATE provides a numerical value indicating the extent to which the

estimated trajectory deviates from the ground truth. It accomplishes this by measuring the Euclidean

distance between corresponding positions or points along the paths. On the other hand, RPE

measures the disparity between the estimated relative poses and the ground truth poses. Typically,

these poses are represented as transformations or rotations between frames. The computation of

RPE involves comparing the relative poses in terms of translation and rotation errors. In both cases,

lower values signify higher accuracy and a closer alignment with the ground truth.

We ran the benchmark test across a set of state-of-the-art feature extractors and compiled the results

into a dataset and report. We will use these results to choose an optimal set of feature extractors for

the final hardware resources available to the device.

To perform the benchmark trial, we attached the Vive Tracker (figure 2a.3) to our CV tracking system

(figure 2a), which used an Intel RealSense D435 (figure 2a.2) for depth imaging and a RealSense

T265 (figure 2a.2) for the IMU. Note that on the final prototype we use the RealSense D455 (figure

5a), which combines the stereo imaging with an onboard IMU on a single device. We then and moved

around a room 8m by 8m (figure 2b) and recorded the data from both systems. After the walk, we

transformed the data received by each system to a common coordinate system and compared the

tracking results (figures 3 and 4).

[3] Holzwarth, V., Gisler, J., Hirt, C., & Kunz, A. (2021). Comparing the Accuracy and Precision of

SteamVR Tracking 2.0 and Oculus Quest 2 in a Room Scale Setup. 2021 the 5th International

Conference on Virtual and Augmented Reality Simulations, 42–46.

https://doi.org/10.1145/3463914.3463921

https://doi.org/10.1145/3463914.3463921

 D3.3 – Hardware integration and Adaptation of
foundation libraries of AR Magic Lanterns

11

Figure 3 Performance comparison of feature extractors with medium resolution (640x480) images:

processing time vs maximum absolute trajectory error.

Figure 4 Performance comparison of feature extractors with low resolution images (320 x 240):

processing time vs maximum absolute trajectory error.

The accuracy of this system has been thoroughly examined in multiple studies, yielding consistent

results within a specific range. To find a desirable balance between translational error and processing

time, we plotted the results of Absolute Trajectory Error (mATE) on the Y-axis against the maximum

processing time (mPT) on the X-axis (figures 3, 4). Across all the feature extractors tested, the system

 D3.3 – Hardware integration and Adaptation of
foundation libraries of AR Magic Lanterns

12

demonstrated an mATE range of 35 to 135 cm and mPT range of 190 to 590 ms when using medium

resolution images (figure 3), and an mATE range of 40 to 160 cm and mPT range of 120 to 350 ms

when using low resolution images (figure 4). To optimize the system's performance for our use case,

we utilized the PyDetector feature extractor using low quality images. With this feature extractor, we

achieved an mATE of 51 cm and mPT of 144 ms.

3.2 Unity integration

Unity is one of the world's most popular game engines and software for game creation. By developing

our game platform for the ARML on top of Unity, we get the benefit of a rich editor application and

extensive developer community. We modelled the integration between Unity and the CV tracking

system on AR Foundation, an SDK maintained by Unity that allows developers to write code against a

common API and run it on a variety of AR subsystems, including ARKit (Apple), ARCore (Google),

and OpenXR. We do not plan to make our integration an official plugin for AR Foundation because

that would require additional developer resources and time. However, we plan to follow its patterns for

a subset of functions so that its API is familiar to developers who have already worked with AR

Foundation.

The ARML Unity integration is a series of Unity components and utility functions. Currently, the

integration connects the Unity game runtime to the ROS runtime that controls our CV tracking system.

This connection is built on top of existing libraries from the ROS community that allow messages to be

passed between ROS and Unity over any network connection. Our Unity components have

associated C# code that subscribes to events that fire whenever ROS sends a message. For

example, when ROS sends an updated camera position/orientation message, our Unity component

handles the message event by updating the camera position/orientation in the game. In the other

direction, Unity sends ROS the anchor positions from the scene when the game begins.

Because the connection between Unity and ROS runs over a network, we are able to easily test and

iterate our integration. One strength of engine/editors like Unity is the ability to rapidly prototype and

test "live" within the editor interface. To facilitate this, we first start the ROS runtime on the Linux

system connected to the camera and sensors (not the one running Unity). The ROS runtime begins

publishing messages over the network. We then start the Unity editor "play" mode, which runs our

Unity application live in the editor. The Unity application receives the messages from ROS and

updates the game components in Unity. We can very easily stop the "play" mode, make changes to

our Unity code, run it again and see the changes, all without restarting the ROS runtime. When we

want to test it on our prototype device, we build the Unity code to our onboard graphics/gameplay

computer (see Hardware Platform), which is connected by local network (direct ethernet cable) to the

ROS computer.

 D3.3 – Hardware integration and Adaptation of
foundation libraries of AR Magic Lanterns

13

3.3 Hardware platform

3.3.1 Computing and graphics

The move away from "off-the-shelf" mobile hardware (i.e., smartphone and pico-projector) has

necessitated extensive investigation and trials to determine the appropriate hardware platform for the

TRL8 prototype(s) (see Motivations and challenges for integration). Because we want the ARML to

support large, intricate games populated by rich 3D graphics, the primary requirement of our

compute/graphics module was that it provided a powerful GPU and an OS that allows Unity to run

natively and take advantage of that GPU (hardware acceleration). Unity has build utilities that allow it

to run natively with hardware acceleration on iOS devices, Windows devices, Linux devices running

on Intel CPUs, and Android devices running on ARM. For reasons already stated, iOS devices were

not an option. We evaluated mobile Windows and Linux systems such as the Latte Panda 3 Delta but

found their GPU hardware acceleration to be low-performance compared with the best Android device

running an ARM CPU/GPU.

Figure 5 The single-board computers (SBCs) used in the prototype of the ARML: (a) Orange Pi 5B

and (b) LattePanda 3 Delta 864

We chose the Orange Pi 5B single-board computer (SBC) as the compute unit for the ARML

prototype (figure 5a). The Orange Pi 5B uses the RockChip RK3588S system-on-a-chip (SOC), which

provides a high performance graphics coprocessor (GPU), the ARM Mali G610, and a powerful 8 core

ARM processor (CPU) running at up to 2.4 GHz. The SBC also provides crucial onboard features

such as support for up to 32 GB RAM (we are using 4 GB currently), up to 256 GB onboard storage

(eMMC), dual-band Wi-Fi, Bluetooth, audio input and output, USB-C connectivity, and HDMI video

output. Orange Pi supplies an Android build that is tuned to work on this specific SBC, so it is well

suited for running games built with Unity.

Because ROS will not run natively on Android, we currently run it on a second SBC, the

aforementioned LattePanda 3 Delta 864 (figure 5b). This SBC features a powerful mobile Intel CPU,

the Celeron N5105, which can run at clock speeds of up to 2.9 GHz. It has out-of-the-box support for

 D3.3 – Hardware integration and Adaptation of
foundation libraries of AR Magic Lanterns

14

all recent versions of the Ubuntu Linux operating system, which means it easily runs ROS and RTAB-

Map.

The system running ROS must be connected via network to the system running Unity (see Unity

Integration), so on our ARML prototype we connect the Orange Pi 5B to the LattePanda 3 Delta with

an ethernet cable. This forms an ad-hoc network between the two computers, so no additional

networking hardware (e.g., routers) are necessary.

3.3.2 Cameras and sensors

There were many options and combinations available for camera and sensor hardware. We based our

selection on components with good long-term availability that were already well-supported by RTAB-

Map, the framework underlying our CV tracking system. In addition, we used environmental criteria in

our selection, such as the requirement for a system that works well in low light and that can

block/ignore interference the projector. We evaluated two depth cameras with integrated motion

sensors (IMUs), the Intel RealSense D455 (figure 6a) and the OAK-D Pro Wide (figure 6b).

Figure 6 Stereo cameras and IMUs evaluated for the prototype: (a) Intel RealSense D455, (b) OAK-

D Pro W, (c) Intel RealSense 435 and Intel RealSense T265 used as a pair.

We decided to use the Intel RealSense D455 camera because it had better compatibility with RTAB-

Map. It has a sufficiently wide field of view that the projector content only fills 20% of the image area.

It features two wide-angle monochromatic cameras sensitive to infrared light, a wide-angle, high-

resolution RGB camera, and an infrared pattern projector. The software onboard the camera fuses the

data from the two stereo cameras, enhanced by the projected infrared dot pattern, with the RGB

image to create an RGB-D (RGB plus depth) image for each recorded frame. This system is known as

"active stereo," which gives vastly improved depth quality compared to "passive stereo," in which the

two stereo images are processed without the infrared dot pattern.

3.3.3 Projector

When it came to choosing a projector for the ARML prototype, we looked for a solution that had a

sufficiently small form factor, ample brightness, support for HDMI video input, and a very large depth-

 D3.3 – Hardware integration and Adaptation of
foundation libraries of AR Magic Lanterns

15

of-focus (DOF) so that it would project crisp images onto surfaces at a large range of distances from

the user (without requiring mechanical focus adjustment). While there are some powerful off-the-shelf

projectors on the market that fill these criteria, we looked instead to "development modules," which

are hardware kits that connect several low-level components into a product that is not for commercial

sale but instead designed to be a functional unit within a pre-commercialization prototype. They have

open, well-documented specifications that allow a manufacturing partner to further integrate their

components when designing the commercialized product.

For the projector, we chose the "EKB E4500MKII Focus" (figure 7a), a variant of an official evaluation

module produced by Texas Instruments, the world's largest manufacturer of DLP (digital light

processing) imaging devices (e.g., screens, televisions, projectors). The variant features a special

lens that gives it improved DOF over other evaluation modules, allowing us to set the focal length

such that images appear sharp in a range of 1.4 to 5 meters. It provides an effective brightness of 600

ANSI Lumens, which is sufficient for use indoors in low to medium lighting conditions, and a

sufficiently high image resolution (1280 x 800) for our needs. We will add a post-processing stage in

Unity that compresses the dynamic range of the projected images and improves overall contrast and

clarity.

Figure 7 (a) The EKB E4500 MKII Focus is a DLP projector development module for use in

embedded systems. (b) Custom rechargeable lithium-ion battery pack (12 VDC).

3.3.4 Batteries and Power

Our primary requirement for the power system of the ARML prototype is that it use a single battery to

power all the devices. This avoids the downtime necessary to charge the battery in-device and

instead allows the end user to exchange the battery when it is depleted. Therefore, we set our power

capacity requirement such that it allows the system to run uninterrupted for at least two hours, which

gives game designers the freedom to build long, complex games and experiences for the ARML.

We worked with a battery manufacturer to build a custom rechargeable battery pack that contains a

set of lithium-ion cells (type 21700) and a circuit board to safely manage charging and discharging

(figure 7b). It outputs 12 VDC and has a capacity of 25 Ah. One lead from the battery goes directly to

 D3.3 – Hardware integration and Adaptation of
foundation libraries of AR Magic Lanterns

16

the projector, which takes a 12 VDC input, and another goes to the LattePanda 3 Delta, which also

takes a 12 VDC input. To supply power to the Orange Pi 5B, which requires 5 VDC input, we use a

circuit board that converts 12 VCD input to 5 VDC output.

3.4 Industrial Design

To test different hardware component configurations, we needed a physical platform that supported

interchangeable modules. The industrial design objectives for this version of our prototype were

therefore focused on modularity and versatility. We already had identified a set of components that

needed to fit into the support (see Hardware Platform), so we based the design around them and left

room for adjustment (figure 8a). For example, the mounting rails on the base and upper supports have

the same width and support component orientations either parallel or orthogonal to the length of the

body. In the current configuration, we chose to mount all of the boards orthogonally because it left

their ports accessible on the open sides of the body (figure 8b). The physical support is printed using

low-cost 3D printers and assembled with standard hardware (e.g., screws, bolts, nuts, washers, etc).

Figure 8 The physical support for new lab prototype: (a) CAD design, (b) open design allows easy

connection of parts to development computer, (c) front view without development

attachments.

 D3.3 – Hardware integration and Adaptation of
foundation libraries of AR Magic Lanterns

17

Figure 9 Detail of ARML physical support, showing: (1) Intel RealSense D455 depth camera, (2)

E4500MKII projector, (3) Orange Pi 5B compute module with ethernet connection to (4)

LattePanda 3 Delta tracking computer, (5) voltage step-down converter module, (6) battery

pack, (7) power switch, (8) battery charger.

Figure 10 Block diagrams showing (a) current ARML prototype [pictured in figure 8] and (b) further

integrated prototype with single compute board and audio subsystem.

4 Conclusion and Next steps

Building our CV tracking system on ROS has allowed us to quickly build, test, and improve a working

tracking system for the ARML. However, it must run on Linux, while our requirements for the final

 D3.3 – Hardware integration and Adaptation of
foundation libraries of AR Magic Lanterns

18

prototype dictate that the Unity application be deployed to a system running Android (see Motivations

and challenges). Therefore, we are now running two separate computers and linking them over a

network connection (see Hardware Platform, Unity Integration, figures 9 and10a). This introduces

complexity, weight, higher power consumption, and, more critically, an unacceptable motion-to-photon

latency. Therefore, the next step is to write a tightly-coupled C++ program for Android that connects

RTAB-Map to our Unity integration without requiring ROS or Linux. This will allow us to run the

prototype on a single compute board (figure 10b).

To further reduce the motion-to-photon latency we plan to add a high-frequency absolute orientation

sensor module connected directly to the compute board via a high-speed bus (UART). The module is

powered by the Bosch BNO055 smart sensor, which integrates an accelerometer, gyroscope,

geomagnetic sensor and an ARM microcontroller running sensor fusion software onboard. The sensor

fusion software combines all of the sensor data and reports and absolute orientation. We will also add

an audio subsystem that includes a 2-channel amplifier board and two speakers.

In parallel, we are working with an industrial designer to construct a compact and ergonomic

enclosure for the components. We are also working with an electrical engineer to build custom cabling

to connect all of the components, which will allow us to further reduce the final space requirements of

the lantern prototype.

 D3.3 – Hardware integration and Adaptation of
foundation libraries of AR Magic Lanterns

19

Appendix 1: List of Terms

Term Definition

Android
Operating system maintained by Google that runs on mobile devices and
embedded systems (like smart TVs, appliances, etc)

AR Subsystem
The SDK that packages low-level systems like the tracking system to allow
developers to mix virtual and physical content into a cohesive application.

ARCore An AR subsystem for Google Android devices

ARKit An AR subsystem for Apple iOS devices

Augmented Reality
(AR)

Broadly used to describe any technology that overlays digital content onto
specific locations in a physical space.

Fiducial marker
A 2D image placed in a physical space to serve as a calibration reference
point for a visual tracking system.

Inside-out Tracking
A tracking system that uses cameras and sensors on the device to be
tracked. The tracking range is unbounded.

iOS
Operating system that runs only on Apple mobile devices (smartphones
and tablets)

LattePanda 3 Delta Single-Board Computer with good Linux performance

Linux
General purpose open-source operating system that supports a large range
of devices

Mixed Reality (MR)
Broadly used to describe a subset of augmented reality that allows
embodied user interaction with 3D digital objects in the world.

Orange Pi 5
Single-Board Computer with powerful graphics capabilities and good
Android performance

Outside-in Tracking

A tracking system that requires camera and sensor units (stations) to be
placed in fixed positions in the physical space. The tracking range of the
system is determined by the number and range of individual stations.

RTABMAP An open-source implementation of SLAM

Simultaneous
Localization and
Mapping (SLAM)

A tracking system that builds and optimizes a database of visual features to
perform inside-out tracking over large areas.

Single-Board Computer
(SBC)

A microcomputer that has all hardware components needed (e.g., wifi,
audio, graphics, CPU, etc) onboard and often has similar power
requirements as a mobile device.

Tracking system
The hardware and software elements that process camera and sensor
inputs to update the position and orientation of a virtual camera.

Window-on-the-World
(WoW)

A paradigm that describes the experience of using screen-based AR, as on
a smartphone or tablet.

World-as-Support
(WaS)

An AR paradigm that requires digital content to be projected onto physical
structures of the world.

