

EMIL project is funded by the European Union and UK Research and innovation.

Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European

Union. Neither the European Union nor the granting authority can be held responsible for them.

D3.6 – SDK for integration of physical activities

into VR experiences

Work Package 3 – Lighthouse Projects at Laboratory Nodes

Authors:

Christof Lutteroth (UB)
Christopher Clarke (UB)

Crescent Jicol (UB)
Adwait Sharma (UB)

Grant Agreement number 101070533
Action Acronym EMIL

Action Title European Media and Immersion Lab
Call HORIZON-CL4-2021-HUMAN-01

 D3.6 – SDK for integration of physical activities
into VR experiences

2

Version date of
the Annex I
against which the
assessment will
be made

Start date of
the project

Due date of
the
deliverable

Actual date of
submission

Lead BEN /
AP for the
deliverable

Dissemination
level of the
deliverable

18.3.2022 1.9.2022 28.2.2023 28.2.2023 UB Public

Document reviewer(s)

Name Beneficiary

Narcis Pares Burgues UPF

Abstract

This document, “SDK for integration of physical activities into VR experiences” (D3.6) provides an

overview of a Software Development Kit (SDK) that can be used to create VR experiences that

integrate physical activities such as walking-in-place, cycling and walking on a crosstrainer. The

SDK is able to detect physical activities purely based on headset movements. This document

describes the software components of the SDK that support different forms of physical activity,

and also gives brief examples of how they can be applied in a VR project.

 D3.6 – SDK for integration of physical activities
into VR experiences

3

Contents

1 Introduction.. 4

2 SDK Overview ... 4

2.1 Locomotion ... 6

Every Locomotion node has the following properties: ... 7

2.2 Direction ... 7

Every Direction node has the following properties: ... 8

3 Locomotion based on Physical Activity ... 8

3.1 WIPLocomotion: Walking-In-Place .. 9

3.2 CyclingLocomotion: Cycling on a Stationary Bike .. 9

3.3 CrosstrainerLocomotion: Walking on a Crosstrainer or Elliptical Trainer 10

3.4 RowingLocomotion: Using a Stationary Rowing Machine .. 10

4 Estimating the Direction of Locomotion .. 11

4.1 HeadDirection: Walking in the Direction of the Headset ... 11

4.2 TiltDirection: Walking in the Direction of Head Tilt ... 11

4.3 FootDirection: Walking in the Direction the Feet are Pointing at ... 12

4.4 WholeBodyDirection: Using Multiple Measures to Estimate Direction 12

5 Application Examples... 12

5.1 Race Yourselves: An Exercycle Racing Game .. 13

5.2 Virtual Performance Augmentation: Walking, Running and Jumping 14

5.3 Savannah Walk: Free Walking .. 15

6 Conclusions ... 15

 D3.6 – SDK for integration of physical activities
into VR experiences

4

1 Introduction

This document, “SDK for integration of physical activities into VR experiences” (D3.6) provides an

overview of a Software Development Kit (SDK) that can be used to create VR experiences that

integrate physical activities such as walking-in-place, cycling and walking on a crosstrainer. The SDK

is able to detect physical activities purely based on headset movements. This document describes the

software components of the SDK that support different forms of physical activity, and also gives brief

examples of how they can be applied in a VR project. The document can serve as a resource for

potential FSTP projects that integrate physical activities into VR. The document is divided into the

following main chapters, providing an overview of different forms of locomotion and methods of

estimating the direction of intended locomotion:

SDK Overview: An overview of the components that make up the SDK.

Locomotion based on Physical Activity: An overview of the component for locomotion in VR

based on physical movements of the user.

Estimating the Direction of Locomotion: An overview of the component that support

estimation of the direction the user wants to move towards in the virtual environment.

Application Examples: Examples of how the SDK can be used to implement movement based

on physical activity in VR.

2 SDK Overview

This chapter provides an overview of the components that make up the SDK. The SDK is being

maintained for several popular game engines including Unity and Godot. All these game engines use

scene trees to manage assets in a VR scene; the components contained in the SDK are nodes that

can be inserted into the scene tree to add support for various physical activities. Each type of physical

activity is implemented as a type of node. The examples given in this document use the Godot game

engine, but will be similar for Unity. The SDK can be used with a wide variety of VR hardware

including head- and handsets supported by OpenVR (e.g. HTC Vive) and OpenXR (e.g. Oculus

Quest). It is designed to work without any additional hardware and does not rely on connections to

any exercise equipment. Node types typically support object-oriented features such as inheritance

and associations, so can be illustrated using a visual class diagram notation. Image 1 shows a class

diagram of the SDK’s node types as well as some of their properties and relationships between them.

 D3.6 – SDK for integration of physical activities
into VR experiences

5

 Overview of node types in the SDK.

Locomotion

speed : Float

multiplier : Float

direction : Vector3

smoothing : Float

WIPLocomotion

CyclingLocomotion

CrosstrainerLocomotion

RowingLocomotion

Direction

direction : Vector3

lateral : Bool

smoothing : Float

HeadDirection

TiltDirection

FootDirection

WholeBodyDirection

0..1

 D3.6 – SDK for integration of physical activities
into VR experiences

6

Boxes represent node types. The identifier at the top of a box is the name of the node type. If it is

written in italics (such as Locomotion and Direction) this means it is an abstract type, i.e. it is not used

directly but only though its subtypes. Below the node type name, some of the most important

properties of node types are listed, together with their type. For example, Locomotion has a property

called speed which is a floating-point number and a property direction which is a 3D vector. The

properties of node types can be accessed in instances of the node types through the graphical user

interface (GUI) of the game engine. This makes it easy to add an instance of a node type to the scene

tree of a VR scene, adjust its properties to fine-tune the behaviour of the node to match the

requirements of the designer, and see property values during testing.

The arrows with hollow triangular arrowheads represent inheritance. For example, WIPLocomotion is

a subtype of Locomotion. This means that all properties of Locomotion are inherited by

WIPLocomotion, CyclingLocomotion, CrosstrainerLocomotion and RowingLocomotion, respectively.

The arrow with the solid arrowhead represents an association between Locomotion nodes and

Direction nodes. A Locomotion node can have at most one associated Direction node. This

association is typically done by simply placing the Direction node as a child under the Locomotion

node in the scene tree. Examples of how nodes can be used are provided in Section 5.

2.1 Locomotion

The abstract node type Locomotion defines an interface shared by all physical VR locomotion

methods implemented by the SDK. That is, it defines properties and functionality shared by all

methods that move the user in VR based on their physical movements. The different subtypes of

Locomotion implement locomotion for specific types of physical user movements:

WIPLocomotion supports locomotion through walking-in-place (WIP) movements. That is, the user

lifts one foot, as if taking a step, and then puts it down again onto the floor, and then repeating the

movement with the other foot and so on. This is similar to the typical human walk cycle, but without

the forward movement. The higher the stepping frequency, the faster is the movement in VR. This

node can also be used for locomotion in VR through running-on-the spot.

CyclingLocomotion supports locomotion by riding a stationary bike such as an exercycle. When a

user start pedalling, then the user will move in VR as if the bike is a normal bike and not a stationary

one. The higher the cycling cadence, the faster is the user moved in VR.

CrosstrainerLocomotion supports locomotion by walking on a crosstrainer or elliptical trainer. When

a user starts walking or running on the crosstrainer, then the user will also move in VR. The higher the

cadence of the crosstrainer, the faster is the user moved in VR.

 D3.6 – SDK for integration of physical activities
into VR experiences

7

RowingLocomotion supports locomotion by rowing on a stationary rowing machine. When a user

starts rowing, then the user will move in VR. The higher the rowing strokes per minute, the faster is

the user moved in VR.

Every Locomotion node has the following properties:

speed is a read-only floating-point value that shows the locomotion speed in meters per second

currently estimated by the locomotion method. This can be applied directly to the VR representation of

the user to create an illusion of real movement.

multiplier is a floating-point coefficient that can be used to adjust the speed of movement produced

by the locomotion method. A multiplier of 1.0 will produce a speed that is plausible for the respective

physical activity, e.g. for the measured cycling cadence assuming an average gear. A multiplier of 2.0

will produce movement that is twice as fast, and 0.5 will produce movement half as fast etc.

direction is a 3D vector describing the direction the locomotion will move the VR user towards in the

3D scene if no Direction node is used to estimate the direction dynamically (see below). For example,

a direction vector of (0, 0, -1) would move the user forward in a right-handed coordinate system. Such

a constant direction vector is useful if the player is moving only into one direction based on physical

activity such as cycling, e.g. if the player is moving along a straight road.

smoothing is a floating-point parameter describing how easily the estimated locomotion speed can

fluctuate from moment to moment. This is based on an exponential average between the current and

previous speed values, resulting in a low-pass filter. A smoothing of 0 will not apply any smoothing,

i.e. estimated speed values can change quickly and potentially erratically. A smoothing greater than 0

and smaller than 1 will average between current and previous locomotion estimates. The higher the

smoothing, the more gradual are the changes in speed produced by a locomotion method.

2.2 Direction

The abstract node type Direction defines an interface shared by different methods for estimating the

direction of locomotion. It defines properties and functionality shared by all methods that estimate the

direction the user wants to travel into based on their physical movements. The subtypes of Direction

implement different ways of estimating this direction, based on different types of user movements:

HeadDirection allows users to move into the direction they are currently facing. For example, if

HeadDirection is used with WIPLocomotion (i.e. a HeadDirection node is child of WIPLocomotion),

then when a user starts walking on the spot, she is moved into the direction their headset is facing at

a speed congruent with their walking.

 D3.6 – SDK for integration of physical activities
into VR experiences

8

TiltDirection allows users to move into the direction their head is tilted towards. There is a natural

tendency of users to tilt their head forward when walking forward, i.e. to have their head angled

slightly towards the ground. TiltDirection also can be used to move sideways, e.g. for “strafing” in a

first-person game, by tilting the head sideways towards the shoulder. It can also be used to move

backwards, by tilting the head back.

FootDirection estimates the direction of movement based on estimated movements of the feet. It is

used only with the WIPLocomotion method, i.e. when the user is walking on the spot. The direction of

locomotion is estimated based on the movement of the headset, which correlates with the movement

of the feet during walking-in-place movements.

WholeBodyDirection estimates the direction of movement based on a variety of movement

measures, including head direction, head tilt and foot direction. It is used only with the

WIPLocomotion method. It aims to balance the different indicators of direction in order to provide a

natural yet powerful experience and reduce estimation noise.

Every Direction node has the following properties:

direction is a read-only 3D vector describing the direction of locomotion estimated by a locomotion

method.

lateral is a Boolean parameter indicating whether the user should be able to move only laterally

(true), i.e. only left and right relative to the direction given in the Locomotion parent node, or into any

direction (false). Restricting the direction to lateral movements can reduce VR sickness.

smoothing is a floating-point parameter describing how easily the estimated direction can fluctuate

from moment to moment. This is based on an exponential average between the current and previous

direction vectors. A smoothing of 0 will not apply any smoothing, i.e. estimated direction vectors can

change quickly and potentially erratically. A smoothing greater than 0 and smaller than 1 will average

between current and previous direction estimates. The higher the smoothing, the more gradual are

the changes in direction produced by a direction estimation method.

3 Locomotion based on Physical Activity

The following sections describe the four methods of locomotion currently supported by the SDK:

WIPLocomotion, CyclingLocomotion, CrosstrainerLocomotion and RowingLocomotion. Locomotion

nodes provide vection by moving their children according to the speed estimated based on the

respective physical activity, and the direction set either in the direction property of the node or a

Direction child node (see chapter 4).

 D3.6 – SDK for integration of physical activities
into VR experiences

9

3.1 WIPLocomotion: Walking-In-Place

Although the physical activity of walking-in-place does not include forward movement, it closely

resembles the normal walking cycle. It has been shown that walking-in-place feels natural and is a

suitable method for locomotion that can create a fairly realistic experience of walking and running in

VR1. It can be used in a fairly small VR play area, while exerting the player physically similar to real

walking.

When using walking-in-place, some users accidentally step forward in the real world. Therefore, it is

important to keep a sufficient distance to physical objects in the real world and to set up a virtual

boundary that warns users before they step outside the play area. Also tactile cues on the floor can be

used to remind players when they are leaving the play area, e.g. a carpet tile to walk on with edges

that can be felt on the feet.

The WIPLocomotion node supports both walking and running on the spot. In both cases it estimates

speed based on steps per minute. The WIPLocomotion node uses movements of the headset to

estimate footfall, which is not as accurate as foot trackers but feasible as footfalls cause systematic

movements of the head. This makes it possible to use the node with any VR headset, regardless of

whether the feet are tracked directly.

3.2 CyclingLocomotion: Cycling on a Stationary Bike

Cycling on a stationary bike or exercycle is a suitable method for locomotion in VR2. Cycling can be

performed from very low to very high levels of exertion, offering a wide range of physical health

benefits. It is fairly safe in VR as the user remains stationary on the bike and can be seated.

Furthermore, it is a good fit for VR experiences that are based on experiences of driving a vehicle, or

riding a bike or motorcycle. CyclingLocomotion preserves the momentum of the bike when the user

stops pedalling. Without pedalling, the speed decreases gradually until locomotion stops.

1 Ioannou, C., Archard, P., O'Neill, E. & Lutteroth, C. (2019). Virtual Performance Augmentation in an

Immersive Jump & Run Exergame. Proceedings of the 2019 CHI Conference on Human Factors

in Computing Systems. ACM Press, 15 p.

2 Barathi, S. C.; Finnegan, D. J.; Farrow, M.; Whaley, A.; Heath, P.; Buckley, J.; Dowrick, P. W.;

Wünsche, B. C.; Bilzon, J. L. J.; O'Neill, E. & Lutteroth, C. (2018) Interactive Feedforward for

Improving Performance and Maintaining Intrinsic Motivation in VR Exergaming. Proceedings of

the 2018 CHI Conference on Human Factors in Computing Systems, ACM. 14 p.

 D3.6 – SDK for integration of physical activities
into VR experiences

10

Using this node, a pedalling user will move in VR as if the bike is a normal bike and not a stationary

one. The estimated speed is proportional to the cycling cadence. The cycling cadence is detected

based on movements of the headset, so it is not necessary for the bike to be instrumented. A

disadvantage of this is that the CyclingLocomotion node is not aware of the current breaking force

applied in the bike. This means that changing the resistance of the bike will not automatically change

the speed of VR locomotion, given a constant cadence. The multiplier property can be used to adjust

the speed according to the resistance level.

3.3 CrosstrainerLocomotion: Walking on a Crosstrainer or Elliptical Trainer

Crosstrainers are fairly safe for VR use because the user stays fairly stationary and can hold on to

handlebars for stability. The CrosstrainerLocomotion node supports users walking on a crosstrainer

based on the movements of the headset, which are correlated with the user’s steps. Similar to

CyclingLocomotion, this has the advantage that any crosstrainer can be used with this node and no

instrumentation is required. It also shares the disadvantage that the node is not aware of the current

resistance of the crosstrainer, so cannot take this into account when calculating locomotion speed.

The multiplier property can be used to adjust the speed according to the resistance level.

3.4 RowingLocomotion: Using a Stationary Rowing Machine

Rowing on a stationary rowing ergometer is a physical activity suitable for locomotion as the user is

seated and the feet are secured, providing some stability. Similar to cycling, rowing can cater for a

wide range of exertion, and similar to a crosstrainer, it engages both the upper and the lower body.

Similar to CyclingLocomotion and CrosstrainerLocomotion, the node estimates rowing speed as

strokes per minute based on movements of the headset. This means that any rowing machine can be

used and no instrumentation is necessary. It also means that the node is not aware of the resistance

of the rowing machine, so cannot factor that into the locomotion speed calculations. The multiplier

property can be used to adjust the speed according to the resistance level.

 D3.6 – SDK for integration of physical activities
into VR experiences

11

4 Estimating the Direction of Locomotion

By default, Locomotion nodes produce vection in the direction given by their direction property. This is

useful for VR experiences where the player moves primarily in a straight line. If a user should be able

to move freely in any direction, such as in typical first person experiences, then a Direction node

needs to be added as a child of the Locomotion node. This SDK is designed to support experiences

where the user stays stationary in a fairly small play area, i.e. where the user does not really move in

any particular direction but stays mainly in one place. This means that the direction of locomotion

must be estimated from cues such as head and body movements. The following subtypes of node

Direction implement different methods of estimating a locomotion direction based on such cues.

4.1 HeadDirection: Walking in the Direction of the Headset

HeadDirection is a simple and effective method for controlling the direction of movement by rotating

the headset into the direction of travel. It is intuitive as it is direct and accurate as the headset

direction can be measured by the VR tracking system. A user can look around when standing still,

and they start moving as soon as the locomotion method is used that is parented to the HeadDirection

node.

However, a drawback of HeadDirection is that users cannot move in one direction and simultaneous

look into another. For example, it is not possible to move backwards or “strafe” sideways, or even look

around you while walking in a certain direction. The other Direction nodes are designed to address

these shortcomings, at the cost of accuracy.

4.2 TiltDirection: Walking in the Direction of Head Tilt

TiltDirection allows users to move into the direction their head is tilted towards. There is a natural

tendency of users to tilt their head forward when walking forward, i.e. to have their head angled

slightly towards the ground in the direction of travel. This means that controlling the direction by tilting

is at least somewhat intuitive, although not as easy to use as head direction.

TiltDirection also can be used to move sideways, e.g. for “strafing” in a first-person game, by tilting the

head sideways towards the shoulder. It can also be used to move backwards, by tilting the head back.

Unlike HeadDirection, TiltDirection decouples the direction of movement somewhat from the direction

the user is facing towards: the user can, for example, look forward but move sideways. However, it is

less predictable and intuitive compared to HeadDirection.

 D3.6 – SDK for integration of physical activities
into VR experiences

12

4.3 FootDirection: Walking in the Direction the Feet are Pointing at

FootDirection estimates the direction of movement based on estimated movements of the feet. It is

used only with the WIPLocomotion method, i.e. when the user is walking or running on the spot, as

the feet cannot easily be turned in the other supported physical activities. The direction of locomotion

is estimated based on the movement of the headset, which correlates with the movement of the feet

during walking-in-place movements.

FootDirection is fairly intuitive for normal walking, as our feet are naturally pointing in our direction of

travel (when taking the average direction of the two feet). It allows users to look around while walking

in a certain direction. However, it does not support special walking movements such as walking

sideways (“strafing”) or walking backwards. Also, as the direction of the feet is only edtimated

indirectly from the movement of the headset, it is not as accurate as, for example, HeadDirection.

4.4 WholeBodyDirection: Using Multiple Measures to Estimate Direction

WholeBodyDirection estimates the direction of movement based on a variety of movement measures,

including head direction, head tilt and foot direction. It can only be used with WIPLocomotion. It aims

to balance the different indicators of direction in order to provide a natural yet powerful experience. It

also aims to reduce estimation noise by combining different measures.

WholeBodyDirection supports walking in a certain direction while looking into another direction. To

achieve this, the direction of the feet are estimated similar to FootDirection and combined with other

indicators such as head tilt. It also supports walking sideways (“strafing”) and backwards based on

head tilting movements, as in TiltDirection. While WholeBodyDirection supports a variety of

movements, it is less predictable and less accurate than simpler direction estimators such as

HeadDirection. We are continuously improving WholeBodyDirection to deliver a rich and accurate

experience of free walking in place in first-person virtual environments.

5 Application Examples

In the following, we present examples of how the SDK for integration of physical activities into VR

experiences can be used. We briefly describe the respective VR experience, and then detail how

Locomotion and Direction nodes can be used to integrate physical activities accordingly.

 D3.6 – SDK for integration of physical activities
into VR experiences

13

5.1 Race Yourselves: An Exercycle Racing Game

 Screenshot of the “Race Yourselves” VR exercycle racing game. Left: The user is riding a

stationary exercycle. Right: While racing along a straight road, previous racing attempts

are visualised as avatars to compete against.

Image 2 shows the game “Race Yourselves”3, which is played by riding a stationary exercycle. The

user races along a straight road and competes against VR avatars. These avatars are in fact

recordings of previous racing attempts of the user, so the user can use them to measure her exercise

progress. With regular gameplay, the user will get faster and overtake her own avatars.

Cycling always moves the user forward in the game, along the straight road. Furthermore, the user

can move laterally to the left and right by tilting their head left and right, respectively. This is achieved

in the following way: A CyclingLocomotion node is set up to move the player according to the

pedalling speed of the exercycle. To achieve this, the node representing the player with her bike in VR

is added as a child of the CyclingLocomotion node. The direction vector of CyclingLocomotion is set

to (0, 0, -1), i.e. straight ahead along the road. To enable players to move sideways by tilting their

head, a TiltDirection node is added as a child of CyclingLocomotion. The lateral property of

TiltDirection is set to true, making sure that the tilt of the head results only in lateral left-and-right

3 Michael, A. & Lutteroth, C. (2020). Race Yourselves: A Longitudinal Exploration of Self-Competition

Between Past, Present, and Future Performances in a VR Exergame. Proceedings of the 2020 CHI

Conference on Human Factors in Computing Systems, ACM, 17 p.

 D3.6 – SDK for integration of physical activities
into VR experiences

14

movements,. This means the bike will always keep pointing forward along the road, which helps to

avoid VR sickness.

5.2 Virtual Performance Augmentation: Walking, Running and Jumping

 Screenshot of the “Virtual Performance Augmentation” prototype. (a) The user is walking,

running and jumping on the spot. (b) User movements are reflected in VR. (c) Day and

night scenes prompt the user to either walk/run slowly or at a high intensity. (d) Running in

place movements are translated into virtual forward movements. (e) Jumping on the spot is

translated into forward jumping, based on the speed of running-on-the-spot before a jump.

Image 3 shows a VR prototype for virtual performance augmentation4, i.e. a system that augments

performance virtually: the system conveys users the experience of being able to run faster and jump

higher that they actually can. Users walk or run along a straight road by walking or running on the

spot. They move left and right in their play area to move left and right in the game, avoiding obstacles.

And they jump on the spot to jump over “lava gaps” in the road. The game amplifies their running

speed as well as their jumping height.

This is achieved as follows: Walking and running on the spot are detected with a WIPLocomotion

node. The direction property of WIPLocomotion is set to vector (0, 0, -1), i.e. straight ahead along the

road. The node representing the player is a child node of WIPLocomotion, so gets moved accordingly.

The multiplier property of WIPLocomotion is used to amplify walking and running speed with values

greater than 1, so the user’s performance is augmented. No Direction node is used; instead, real

sideway movements in the play area result in respective sideway movements in the game, so the

player can evade obstacles. Jumping is supported with custom code, which reads the estimated

walking/running speed from WIPLocomotion and, when the user jumps, applies the speed right before

the jump as a forward vector to the jump itself.

4 Ioannou, C., Archard, P., O'Neill, E. & Lutteroth, C. (2019). Virtual Performance Augmentation in an
Immersive Jump & Run Exergame. Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems. ACM Press, 15 p.

 D3.6 – SDK for integration of physical activities
into VR experiences

15

5.3 Savannah Walk: Free Walking

 Screenshot of the “Savannah Walk” prototype. The user can travel freely through the

virtual environment by walking in place.

Image 4 shows the “Savannah Walk” prototype, which is a virtual nature walk experience. The user

can travel through the virtual landscape by walking in place and turning in the play area. This is

achieved with a WIPLocomotion node, which is the parent of the node representing the player and

also the parent of a WholeBodyDirection node. The direction property of WIPLocomotion is not used.

The lateral property of WholeBodyDirection is set to false, allowing for movements in all directions.

6 Conclusions

We have presented an SDK for the integration of physical activities into VR experiences. This SDK is

maintained for the Unity and Godot game engines, supporting a wide variety of VR hardware through

the OpenVR and OpenXR standards. The SDK allows developers to control locomotion in a VR

experience based on a physical activity such as walking, running, cycling, using a crosstrainer, and

rowing. The SDK is able to detect physical activities purely based on headset movements.

Furthermore, it enables users to control the direction of locomotion based on different natural input

methods (i.e. methods based on body movements). The core of the SDK is formed by Locomotion

and Direction node types, which can be inserted into the scene tree of a VR scene. The way physical

activity is integrated into a VR experience can be configured by combining different Locomotion and

 D3.6 – SDK for integration of physical activities
into VR experiences

16

Direction nodes and adjusting their properties. As a result, physical activity can often be integrated

into many VR experiences without much design effort.

